Image preprocessing

Frequency analysis and filtering Il



Sampling

Sampling is restriction of continuous domain of signal f(z) onto
discrete subset, e.g.

o f:R — R - signal,
@ Az — sampling period

e Sampled signal fs(n) = f(nAz), n € Z.
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Figure: Here T = Az, x(n) = fs(n)




Sampling

More generally

e ¢q:U—R,
o U is discrete subset of R

@ In the previous example ¢(n) = nAx.



Models of signal sampling

Dirac 0 'function’
e J:R—=R
@ §(z) =0 for all z # 0.
o [ d(x)dx=1
Represents impulse with finite energy.

It is not a function in the strict sense. It is so called 'generalized
funcion’ or 'distribution’.

e Sifting property

/_O; f(z)d(x — a)dz = a.



Model of signal sampling

Define impulse train
r(x) = Z d(x — nAx)
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Figure: Impulse train T'= Az, Jae S. Lim, Alan V. Oppenheim:Advanced
topics in signal processing.



Model of signal sampling

Modulate (multiply) signal by impulse train

f(@)r(x) = fx) ) 6(z —nAz) (1)

ne’

Integrate modulated signal in neighborhoods of samples

nAx+e

fs(n) = lim f(x)r(z)dz.

=0 JpAz—e



Modulated system in frequency domain

Convolution theorem for fourier transform

Flf-r]=F=x*R

@ F — Fourier transform operator
o F=F(f), R=F(r)



Modulated system in frequency domain

What is R?

@ Impulse train 7(z) is periodic with period Ax

@ We can find Fourier series for periodic function r

r(x) = Z cne AT

neL

o Coefficients of Fourier series of impulse train are ¢, = ﬁ



Modulated system in frequency domain

We apply Fourier transform on

1 ;N
r(z) = Ar Z e 2Miag"

nez
and get
1 > n
R(§) = MHZE:OO(S(S — ?x)
Conclusion

@ Fourier transform of impulse train in space domain is impulse
train in frequency domain.

@ Shorter impulse train period in space domain gives longer
impulse train period in frequency domain and v.v.



Modulated system in frequency domain

Convolution with signal

e}

(Fem©)=[ FORE-ni=5 3 F
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Graphically for band limited signal
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Figure: —27F, is cutoff frequency, Jae S. Lim, Alan V.
Oppenheim:Advanced topics in signal processing.



Modulated system in frequency domain

Impulse train in frequency domain
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Figure: Jae S. Lim, Alan V. Oppenheim:Advanced topics in signal
processing.

and resulting convolution

X, (Q)+5,(Q)




Modulated system in frequency domain

@ Fourier transform of digital signal is the sum of
frequency-shifted and scaled version of the Fourier transform
of the continuous signal.



Modulated system in frequency domain — aliasing
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Figure: Result of sampling with sampling frequency equal to double of
cut-off frequency
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Figure: Result of sampling with sampling frequency less than double of
cut-off frequency — aliasing occurs.



Modulated system in frequency domain — aliasing

@ In aliased case, signal cannot be reconstructed back in space
domain from frequency domain.

If continuous signal f(x) has a band limited spectrum, i.e.

|F(&)| =0 for & > F,, then f can be uniquely reconstructed from
equally spaced samples fs(n) = f(nT) if sampling frequency is at
least two times the highest frequency in the signal.




Filtering in frequency domain

@ Transform signal from space to frequency domain f ~~ F'

@ Multiply the transformed signal by function G called filter.
H = F x G. The filter G is zero at those frequencies which
need to be suppressed.

@ Transform resulting spectrum back to space domain H ~~ h



Useful filters

o ldeal filter
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o Low-pass filter.

@ Suppresses all frequencies which are above cut-off frequency of
the filter.



Useful filters

o Gaussian filter
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o Low-pass filter.



High-pass filters construction

If G is a low-pass filter, then high-pass filter H can be constructed
as

H=1-G



Discrete Fourier transform

Describes spectral properties of discrete signal. It is similar to
continuous Fourier transform.

e for f(n), n=0,...,N — 1 a discrete signal, discrete Fourier
transform is defined as

-nk

F(k)=>_ f(n)e >~



Discrete Fourier transform in 2D

e for f(m,n), m=0,....,M —1,n=0,...,N —1 a discrete
signal, discrete Fourier transform is defined as

M—-1N-1

F(u,v) = Z Z f(m, n)e_%i(%"‘n?\?)

m=0 n=0

w=0,1,....,M—1, v=0,1,...,N—1,

a inverz
M-1N-1
) = 3 3 Pl ()
u=0 v=0

m=0,1,...,M—1, n=0,1,...,N—1,



Example of 2D DFT application — Periodic noise

We have image distorted by periodic noise




Example of 2D DFT application — Periodic noise

Spectrum of previous image obtained using 2D DFT. Notice the red
pixels (peaks in the spectrum) — hard to see.
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Example of 2D DFT application — Periodic noise

Spectrum with smoothed out peaks
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Example of 2D DFT application — Periodic noise

Image with removed noise




